1. Draw an area model for each pair of fractions, and use it to compare the two fractions by writing \(> \), \(< \), or \(= \) on the line. The first two have been partially done for you. Each rectangle represents 1.

(a) \(\frac{1}{2} \quad < \quad \frac{2}{3} \quad \frac{3}{6} \quad \frac{4}{6} \n\)

(b) \(\frac{3}{5} \quad > \quad \frac{2}{3} \quad \frac{6}{10} \quad \frac{4}{15} \quad \frac{8}{20} \n\)

(c) \(\frac{3}{5} \quad > \quad \frac{4}{7} \quad \frac{21}{35} \quad \frac{28}{42} \n\)

(d) \(\frac{3}{7} \quad > \quad \frac{2}{5} \quad \frac{15}{42} \quad \frac{12}{21} \n\)

(e) \(\frac{5}{6} \quad < \quad \frac{6}{9} \quad \frac{25}{30} \quad \frac{45}{54} \n\)

(f) \(\frac{5}{8} \quad < \quad \frac{3}{12} \quad \frac{15}{24} \quad \frac{3}{12} \n\)
2. Rename the fractions as needed using multiplication in order to compare the two fractions in each pair by writing a $>$, $<$, or \leq.

(a) $\frac{3}{5} < \frac{5}{6}$

\[
\frac{3 \times 6}{5 \times 6} = \frac{18}{30}
\]

(b) $\frac{2}{3} \leq \frac{3}{4}$

\[
\frac{2 \times 3}{6 \times 8} = \frac{16}{48}
\]

(c) $\frac{7}{5} > \frac{10}{8}$

\[
\frac{7 \times 5}{5 \times 8} = \frac{56}{40}
\]

(d) $\frac{4}{3} \geq \frac{5}{6}$

\[
\frac{4 \times 5}{3 \times 5} = \frac{20}{15}
\]

3. Use any method to compare the fractions. Record your answer using $>$, $<$, or \leq.

(a) $\frac{3}{4} < \frac{7}{8}$

\[
\frac{3 \times 2}{4 \times 2} = \frac{6}{8}
\]

(b) $\frac{6}{8} \geq \frac{3}{5}$

\[
\frac{6 \times 5}{8 \times 5} = \frac{30}{40}
\]

(c) $\frac{8}{5} \geq \frac{6}{4}$

\[
\frac{8 \times 6}{6 \times 4} = \frac{36}{24}
\]

(d) $\frac{8}{5} > \frac{9}{6}$

\[
\frac{8}{5} = \frac{3}{5} \leq \frac{6}{3}
\]

\[
\frac{9}{6}
\]

4. Explain two ways you have learned to compare fractions. Provide evidence using words, pictures and numbers.

I can draw area models to compare fractions by showing common units. After I shade each area model, I can compare the shaded parts of each area model.

I can use multiplication to make fractions that have the same denominator. Then, I can compare the numerators to see which fraction is larger.

Example: $\frac{1}{2} \leq \frac{1}{3}$

\[
\frac{1 \times 2}{3 \times 2} = \frac{2}{6}
\]