Use the number path to solve.

1. 3 - 2 = 1
 2 + 1 = 3

2. 6 - 4 = 2
 4 + 2 = 6

3. 8 - 5 = 3
 5 + 3 = 8

4. 9 - 6 = 3
 6 + 3 = 9
Use the number path to help you solve.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

5. \(5 - 4 = \underline{\hspace{2cm}}\)
 \(4 + \underline{\hspace{2cm}} = 5\)

6. \(5 - 1 = \underline{\hspace{2cm}}\)
 \(1 + \underline{\hspace{2cm}} = 5\)

7. \(7 - 5 = \underline{\hspace{2cm}}\)
 \(5 + \underline{\hspace{2cm}} = 7\)

8. \(10 - 6 = \underline{\hspace{2cm}}\)
 \(6 + \underline{\hspace{2cm}} = 10\)

9. \(9 - 3 = \underline{\hspace{2cm}}\)
 \(3 + \underline{\hspace{2cm}} = 9\)
Rewrite the subtraction number sentence as an addition number sentence. Place a □ around the unknown. Use the number path if you want to.

1. \[4 - 3 = \square\]
 \[\square + \square = 4\]
 \[3 + \square = 4\]

2. \[6 - 2 = \square\]
 \[\square + \square = 6\]
 \[2 + \square = 6\]

3. \[7 - 3 = \square\]
 \[\square + \square = 7\]
 \[3 + \square = 7\]

4. \[9 - 6 = \square\]
 \[\square + 3 = 9\]
 \[6 + 3 = 9\]

5. \[10 - 2 = \square\]
 \[\square + \square = 10\]
 \[2 + \square = 10\]

Use the number path to count on.

6. \[8 - 4 = \square\]
 \[\square + \square = 8\]
 \[4 + \square = 8\]

7. \[9 - 5 = \square\]
 \[\square + \square = 9\]
 \[5 + \square = 9\]
Hop back on the number path to count back.

a. $10 - 1 = \underline{9}$

9. $9 - 2 = \underline{7}$

Pick the best way to solve the problem. Check the box.

- Count on
- Count back

(a) $10 - 9 = \underline{1}$
(b) $9 - 1 = \underline{8}$
(c) $8 - 5 = \underline{3}$
(d) $8 - 6 = \underline{2}$
(e) $7 - 4 = \underline{3}$
(f) $6 - 3 = \underline{3}$