1. a. Skip-count by nine.

 9, 18, 27, 36, 45, 54, 63, 72, 81, 90

 b. Look at the tens place in the count-by. What is the pattern?

 The tens place increases by 1.

 c. Look at the ones place in the count-by. What is the pattern?

 The ones place decreases by 1.

2. Complete the equations.

 a) 10 more than 0 is \(\underline{10} \)

 1 less is \(\underline{9} \)

 \(1 \times 9 = \underline{9} \)

 b) 10 more than 9 is \(\underline{19} \)

 1 less is \(\underline{18} \)

 \(2 \times 9 = \underline{18} \)

 c) 10 more than 18 is \(\underline{28} \)

 1 less is \(\underline{27} \)

 \(3 \times 9 = \underline{27} \)

 d) 10 more than 27 is \(\underline{37} \)

 1 less is \(\underline{36} \)

 \(4 \times 9 = \underline{36} \)

 e) 10 more than 36 is \(\underline{46} \)

 1 less is \(\underline{45} \)

 \(5 \times 9 = \underline{45} \)

 f) 10 more than 45 is \(\underline{55} \)

 1 less is \(\underline{54} \)

 \(6 \times 9 = \underline{54} \)

 g) 10 more than 54 is \(\underline{64} \)

 1 less is \(\underline{63} \)

 \(7 \times 9 = \underline{63} \)

 h) 10 more than 63 is \(\underline{73} \)

 1 less is \(\underline{72} \)

 \(8 \times 9 = \underline{72} \)

 i) 10 more than 72 is \(\underline{82} \)

 1 less is \(\underline{81} \)

 \(9 \times 9 = \underline{81} \)

 j) 10 more than 81 is \(\underline{91} \)

 1 less is \(\underline{90} \)

 \(10 \times 9 = \underline{90} \)
3. a. Analyze the equations in problem 2. What is the pattern?

The pattern is add 10 then subtract 1. 10-1.
To get a nines fact you add 10, then subtract 1.

b. Use the pattern to find the next 4 facts. Show your work.

<table>
<thead>
<tr>
<th>11 x 9 =</th>
<th>12 x 9 =</th>
<th>13 x 9 =</th>
<th>14 x 9 =</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 + 10 = 100</td>
<td>99 + 10 = 109</td>
<td>108 + 10 = 118</td>
<td>117 + 10 = 127</td>
</tr>
<tr>
<td>100 - 1 = 99</td>
<td>109 - 1 = 108</td>
<td>118 - 1 = 117</td>
<td>127 - 1 = 126</td>
</tr>
<tr>
<td>11 x 9 = 99</td>
<td>12 x 9 = 108</td>
<td>13 x 9 = 117</td>
<td>14 x 9 = 126</td>
</tr>
</tbody>
</table>

c. Kent notices another pattern in problem 2. His work is shown below. He sees that:
 - the tens digit in the product is 1 less than the number of groups
 - the ones digit in the product is 10 minus the number of groups

2 x 9 = 18	tens digit	1 = 2 - 1	ones digit	8 = 10 - 2
3 x 9 = 27	2 = 3 - 1	7 = 10 - 3		
4 x 9 = 36	3 = 4 - 1	6 = 10 - 4		
5 x 9 = 45	4 = 5 - 1	5 = 10 - 5		

Use Kent's strategy to solve 6 x 9 and 7 x 9.

6 x 9 = 54 → 5 = 6 - 1 and 4 = 10 - 6
7 x 9 = 63 → 6 = 7 - 1 and 3 = 10 - 7

d. Show an example of when Kent's pattern doesn't work.

12 x 9 = 108. 0 does not equal 12 - 1. And 8 does not equal 10 - 12.
4. Each number sentence contains a letter representing the unknown. Find the value of each unknown. Then write the letters that match the answers to solve the riddle.

\[
\begin{align*}
 a \times 9 &= 54 & 81 \div 9 &= g \\
 a &= 6 & g &= 9 \\
 9 \times d &= 72 & d &= 8 \\
 o \div 9 &= 10 & e \times 9 &= 63 \\
 o &= 90 & e &= 7 \\
 9 \times n &= 27 & 9 \times s &= 36 \\
 n &= 3 & s &= 4 \\
 t \times 9 &= 18 & i \div 9 &= 5 \\
 t &= 2 & i &= 45 \\
\end{align*}
\]

How do you make one vanish?

Add a 'g' and it's gone!