1. Label the tape diagrams and complete the equations. Then draw an array to represent the problems.

a)

\[
\begin{align*}
\text{4} & \quad \text{2} \\
\hline
\text{2} & \quad \text{4} \\
\hline
2 \times 4 & = 8 \\
4 \times 2 & = 8
\end{align*}
\]

b)

\[
\begin{align*}
\text{3} & \quad \text{4} \\
\hline
\text{3} & \quad \text{4} \\
\hline
3 \times 4 & = 12 \\
4 \times 3 & = 12
\end{align*}
\]

c)

\[
\begin{align*}
\text{7} & \quad \text{4} \\
\hline
\text{7} & \quad \text{4} \\
\hline
7 \times 4 & = 28 \\
4 \times 7 & = 28
\end{align*}
\]
2. Draw and label 2 tape diagrams to model how the statement in the box is true. \(4 \times 6 = 6 \times 4\)

![Tape Diagram 1](image1)

![Tape Diagram 2](image2)

3. Grace picks 4 flowers from her garden. Each flower has 8 petals. Draw and label a tape diagram to show how many petals there are in total.

![Tape Diagram 3](image3)

There are 32 petals on Grace's 4 flowers.

4. Michael counts 8 chairs in his dining room. Each chair has 4 legs. How many chair legs are there altogether?

![Tape Diagram 4](image4)

There are 32 chair legs altogether.