1. Count-by seven to fill in the blanks and match each count-by to its multiplication expression. Then use the multiplication equation to write the related division fact directly to its right.

- 42 ÷ 7 = 6
- 21 ÷ 7 = 3
- 56 ÷ 7 = 8
- 49 ÷ 7 = 7
- 7 ÷ 7 = 1
- 35 ÷ 7 = 5
- 63 ÷ 7 = 9
- 28 ÷ 7 = 4
- 14 ÷ 7 = 2
2. Complete the count-by seven sequence below. Then write a multiplication equation and a division equation to represent each blank you filled in.

\[
\begin{array}{cccccc}
7, 14, & 21, & 28, & 35, & 42, & 49, & 56, & 63, & 70 \\
a) & b) & c) & d) & e) \\
a) & 3 \times 7 = 21 & & 21 \div 7 = 3 \\
b) & 8 \times 7 = 56 & & 56 \div 7 = 8 \\
c) & 7 \times 7 = 49 & & 49 \div 7 = 7 \\
d) & 8 \times 7 = 56 & & 56 \div 7 = 8 \\
e) & 10 \times 7 = 70 & & 70 \div 7 = 10 \\
\end{array}
\]

3. Abe says \(3 \times 7 = 21\) because 1 seven is 7, 2 sevens are 14 and 3 sevens are 14 + 6 + 1, which equals 21.

Why did Abe add 6 and 1 to 14, when he is counting by seven?

\[
\begin{align*}
14 + 7 & = 21 \\
\text{and} & \\
6 + 1 & = 21 \\
\end{align*}
\]

Abe added 6 and 1 to 14 because he used a number bond to break apart 7.

4. Molly says she can count-by seven 6 times to solve \(7 \times 6\). James says he can count-by six 7 times to solve this problem. Who is right? Explain your answer.

They are both right because counting-by 7 six times equals 42 and counting-by 6 seven times also equals 42, which is the answer to \(7 \times 6\).

\[
7 \times 6 = 6 \times 7
\]